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A b s t r a c t - - A  recurrent wavelet-based neuro fuzzy network (RWNFN) is proposed in this paper. 
The proposed RWNFN integrates wavelet transforms with fuzzy rules. Temporal relations are em- 
bedded in the network by adding feedback connections from memory units in the third layer of a 
feedforward wavelet-based neuro fuzzy network (WNFN). The RWNFN augments the basic ability 
of the WNFN to overcome temporal problems. Moreover, an online learning algorithm is proposed 
to automatically construct the RWNFN. Computer simulations were conducted to illustrate the per- 
formance and applicability of the proposed system. © 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - R e c u r r e n t  network, TSK-type fuzzy model, Wavelet neural networks. 

1. I N T R O D U C T I O N  

The backpropagation network is a multilayer feedforward network combined with a gradient- 
descent-type learning algorithm called the backpropagation learning rule. The backpropagation 
network has had a major impact on the field of neural networks and is the primary method 
employed in most of the applications. However, it is difficult to understand the meaning of each 
neuron and each weight in the network. Generally, fuzzy systems are easy to appreciate because 
they use linguistic terms and if-then rules. However, fuzzy systems lack the learning procedures 
to fine-tune the fuzzy rules and membership functions. Therefore, neuro fuzzy networks aim at 
providing fuzzy systems with automatic tuning abilities. With this approach, we witness the 
use of the backpropagation learning rule in learning or tuning membership functions and fuzzy 
rules of fuzzy systems. The backpropagation learning techniques can thus substantially reduce 
development time and cost while improving the performance of fuzzy systems [1]. Recently, neuro 
fuzzy networks have been shown to obtain successful results in the identification and control of 
dynamic systems [2-6]. 
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As is widely known, problems arise in the identification and control of dynamic systems [7]. 
Since, for a dynamic system, the output is a function of a past output or a past input or both, 
identification and control of this kind of system is not as straightforward as of a static system. If 
existing feedforward neuro fuzzy networks are used to deal with dynamic systems, then we must 
know the number of delayed inputs and outputs in advance. The problem with this approach 
is that the exact order of the dynamic system is usually unknown. In addition, the usage of 
the long tapped delay input will increase the input dimension and will result in a large network 
size. To summarize the problems mentioned above, a major drawback of feedforward neuro 
fuzzy networks [2-6] is that their application is limited to static mapping problems. However, 
to identify dynamic systems or to recognize temporal sequences, recurrent neuro fuzzy networks 
should be employed [8-14]. 

In this paper, we propose a recurrent wavelet-based neuro fuzzy network (I~WNFN). The 
RWNFN model is based on our previous research [2]. In [2], we presented a wavelet-based neuro 
fuzzy network (WNFN) that deals with the problems of static system identification. Processing 
temporal problems using WNFN is inefficient. Hence, we propose a RWNFN model that deals 
with temporal problems and is more efficient for solving dynamic systems than the WNFN. 

The RWNFN model integrates the traditional TSK-type fuzzy model and the wavelet neural 
network (WNN). The goal of combining the RWNFN model with the WNN model is to improve 
the accuracy of function approximation. Each fuzzy rule corresponding to a WNN consists of 
single-scaling wavelets. We adopt nonorthogonal and compactly supported functions as the bases 
of the wavelet neural network. The online structure/parameter learning algorithm is performed 
concurrently in the RWNFN. Structure learning is based on the degree measure to determine the 
number of fuzzy rules and wavelet functions, and parameter learning is based on the gradient 
descent method to adjust the shape of the membership function and the connection weights of 
WNN. 

Overall, the proposed model addresses the following objectives: 

(1) to achieve recurrent properties for dynamic systems identification; 
(2) to obtain dynamic composition for patterns clustering and to adjust free parameters by 

the learning process from input-output data; 
(3) to achieve quick convergence and to require as small a number of tuning parameters as 

possible. 

2. S T R U C T U R E  OF T H E  R E C U R R E N T  
W A V E L E T - B A S E  N E U R O  F U Z Z Y  N E T W O R K  

2.1. Descr ipt ion  o f  Wavele t  Neura l  Network  

To generate the novel form of the TSK model, the RWNFN integrates the traditional TSK-type 
fuzzy model and the WNN [15]. The goal of integrating the RWNFN model with the WNN model 
is to improve the accuracy of function approximation [16]. Each fuzzy rule corresponding to a 
WNN consists of single-scaling wavelets. In this paper, we adopt nonorthogonal and compactly 
supported functions in a finite range as the wavelet bases [17]. The shape and position of the 
wavelet bases are shown in Figure 1. 

A new type of WNN is shown in Figure 2. An ordinary wavelet neural network model is often 
used to normalize input vectors in the interval [0, 1]. We then calculate the ¢a.b(X~) functions 
which are used to input vectors to fire up the wavelet interval. (This means the value of the 
wavelet function should be zero.) Obviously, we would obtain a value ¢~.b, as follows: 

~ba.5 -- ~=1 where b =  1 , . . . , a  and a = 1 , . . . , m ,  (1) 
Ixl 
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Figure 1. Wavelet bases are over-complete and compactly supported. 
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Figure 2. Schematic diagram of the WNN. 

where IXI is the number of input dimensions and b is a shifting parameter, the maximum value of 
which is equal to the corresponding scaling parameter a. The final output of the wavelet neural 
network is: 

k 

~j = ~ J ~¢0.0 + ~kCmm, (2) w ~ ¢ o . b  = w~¢1 ,0  + . . .  + ; 
i=1 

where ~j is the output of the local model for the jth rule, and the link weight w j is the output 
action strength associated with the j th  rule and k th Ca.b. 

2.2. Description of  the R W N F N  Model  

The suggested recurrent wavelet-based neuro fuzzy network (RWNFN) is given as follows: 

R j :  I fx l ( t )  is A { and . . .x i ( t )  is A j and .. .  and x.(t) is A~ and hi(t) is G 

then ~j(t + ~) is ~ ~ 1) i~ 6 ,  wi ¢a.b and hj (t + 
i--1 

(3) 

where Rj is the jth rule; x = [xl, x2 . . . .  , x~] T is the input vector to the model; hj is the internal 
variable;~j is the jth output of the local model for rule R~, A{ and G are fuzzy sets. The 0j and 

1 ^ w i are the consequent parameters for output hj and yj, respectively. Dynamic reasoning implies 
that the inference output Y(t + 1) is affected by the internal variable hi(t), and the current 
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Figure 3. Schematic diagram of the RWNFN model. 

internal output hj(t + 1)is a function of the previous output value hi(t); that is, the internal 
value hj itself forms the dynamic reasoning. 

The structure of the RWNFN model will now be introduced and is shown in Figure 3. Basically, 
it is a five-layer neural fuzzy network embedded with dynamic feedback connections (the feed back 
layer in Figure 3). With the dynamic feedback connections, the feedforward neural fuzzy network 
has temporal processing ability. Nodes in Layer 1 are input nodes for input linguistic variables. 
Nodes in Layer 2 are called input term nodes and act as membership functions representing the 
terms of the respective input linguistic variables. Two types of membership functions are used in 
this layer. For the external variable x, a local membership function, the Gaussian membership 
function is adopted. For the internal variable h, a global membership function, the sigmoid 
function is adopted. Each internal variable has a single corresponding fuzzy set. Each node in 
Layer 3 is called a rule node. The number of rule nodes in this layer is equal to the number 
of fuzzy sets corresponding to each external linguistic input variable. Note that the number of 
internal variables h is equal to the rule nodes. Nodes in Layer 4 are called consequent nodes. Each 
rule node has a corresponding consequent node which performs a weighted nonlinear combination 
of the input variables x. In Layer 5, the nodes are called defuzzification nodes. 

To give a clear understanding of the mathematical function of each node, we will describe the 
function of RWNFN layer by layer. The notation i~l) signifies the net input to the ith node in 

Layer l, and the notation O~ 0 signifies the net output. 

LAYER 1. No computation is done in this layer. These nodes only pass the input signal to the 
next layer 

1) = x ,  (4)  

LAYER 2. Each node in this layer acts as a membership function representing the term of the 
respective input-linguistic variables; that is, the membership value specifying the degree to which 
an input value belongs to a fuzzy set is determined in this layer. The Gaussian function given 
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below is adopted as the membership function 

Oi~)=exp((I~2) - mi j )2)  i}2) = 0(i) ~2- and i , (5) 

where mij and aij are the mean and standard deviation, respectively, of the jth term associated 
with the ith input variable . For the internal variable hi, the following sigmoid membership 
function is used 

O / )  1 
= 1 + exp( -h j ) '  (6) 

where 
hj = oJ ~) • 0j (7) 

are the feedback units acting as memory elements, and 0j is the feedback weight. As in Figure 3, 
the delayed value of hj is fed back to Layer 1 and act as an input variable to the precondition part 
of a rule. Each rule has a corresponding internal variable hj and is used to decide the influence 
degree of temporal history to the current rule. 

LAYER 3. Each node in this layer is a rule node representing the preconditioning part of one 
fuzzy logic rule. Therefore, each node in this layer is denoted by rI, which multiplies the incoming 
signals from Layer 2 and the feedback layer and outputs the product result, that is, the firing 
strength of a rule. For the jth rule node 

f i  1 ( ( I } 2 )  --mij)2 ~ 
O)3) ~" O ~ f ) "  i=1 O}2)-- 1 + exp(-hj )  "exp a,j2 ) , (8) 

where n is the number of external inputs. ! 

LAYER 4. Nodes in this layer receive the signals, which are ~j from the output of the wavelet 

O~ a) from the output of Layer 3. The mathematical function of each neural network model and 
Node j is 

J . O~ 3). oJ ~) = ~ .  oJ ~) = ~,¢o.b (9) 
\ i = 1  / 

LAYER 5. The node in this layer computes the output signal Y. The output node together with 
links connected to it acts as a defuzzifier. The mathematical function is 

y = _ _  

M M 
E oJ ~) E ~J-oJ ~) 

j = l  j = l  
M M 
~: oJ ~) Z o?) 
j=1 j=l 

(10) M 
J w j .03(. a) E (~{¢0.0 + ~¢1.0 + . . .  + kCm.~) 

j = l  
M 
Z o?) 

j = l  

where the link weight ~)j is the output of the local model of the wavelet neural network model for 

the jth rule, O~ a) is the output of Layer 3, M denotes the number of existing fuzzy rules, which 
equals the number of wavelwt bases and Y is the output of the RWNFN. 

3. A N  O N L I N E  L E A R N I N G  A L G O R I T H M  F O R  R W N F N  

For dynamic neuro fuzzy models, the major problem is in determining the structure of a model. 
Recently, many neuro fuzzy models were proposed by [3,4,10,11]. The two steps in the learning 
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method were adopted to determine the proper fuzzy rules and the adjustable parameters for their 
models. For the initialization of the parameters in their models, the rule number needs to be 
given in advance. What makes our proposal different from [3,4,10,11] is that an online learning 
algorithm is adopted for constructing the RWNFN. Users need not give any a priori knowledge 
or even any initial information in our proposed model. More notably, in our learning method, 
only the training data need to be provided from the outside world. 

The proposed learning algorithm consists of structure learning and parameter learning. The 
objective of structure learning is to make sure that proper fuzzy partitioning, membership of 
the rule nodes, weights of the feedback, and link weights in the wavelet neural network are 
generated dynamically. On the other hand, the objective of parameter learning is to tune an 
adjustable parameter that is generated from structure learning. Notice that the structure and 
parameter learning are performed concurrently to construct the RWNFN. Details of the two 
learning algorithm are described as follows. 

3.1. Structure Learning Algorithm 

Since there are no rules initially in the RWNFN, the first step is to generate a new rule from 
the input space, which represents the spatial information. For this reason, the spatial information 
is used for clustering due to its local mapping. Geometrically, a rule corresponds to a cluster in 
the input space, with m~j and aij representing the mean and variance of that cluster. For each 
incoming pattern xi, the strength with which a rule is fired can be interpreted as the degree of 
the incoming pattern that belongs to the corresponding cluster. The firing strength obtained 
from equation (8) is used as the degree measure [8] 

Dj = O53), j = 1 , . . . ,Q(s) ,  (11) 

where Q(s)is the number of existing rules at time s. According to the degree measure~ the 
criterion for generating a new fuzzy rule for new incoming data is described as follows. 

Find the maximum degree Dmax 

Dmax = max Dj. (12) 
l_<j<Q(s) 

If Dmax _< D, then a new rule and new wavelet base are generated, where D E (0,1) denotes 
a prespecified threshold that should decay during the learning process, thus limiting the size of 

RWNFN. 

m(.ew) (13) i ~ -  X i ,  

(.ow) (14) G i ~ O'prespecifie d , 

Wk(new) 0(new) = -i = r, where r e [-1, 1], (15) 

where xi is the new incoming data; cri is a prespecified constant; and the weight of the feedback 0i 
and the link weight of WNN w~ are selected with random values r in [-1, 1]. 

The concise online structure learning algorithm of the RWNFN model is given as follows: 

Initialization; 

do{ 
IF x is the first incoming pattern, 
do{ 

Generate new nodes; 
with mean mij = xi; 
deviation aij ---- ( T p r e s p e c i f i c d ;  

link weight w~ and of WNN and weight of feedback Oi are selected with random values; 
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} 
ELSE for each newly incoming x 
do{ 

Execution structure learning scheme 
I/Dmax < D 
do{ 

Generate new nodes; 
with mean mij =- xi; 
deviation aij = O ' p r e s p e c i f i e d ;  

link weight w~ and of WNN and weight of feedback Oi are selected with random 
values; 

} 
} 

} until task completion 

3.2. Parameter Learning Algorithm 

After the network structure has been adjusted according to the current training pattern, the 
network then begins parameter learning to adjust the parameters of the membership functions 
optimally with the same training pattern. The problem in parameter learning can be stated 
as follows: given the training input data x -- Ix1,... ,xn] and the desired output value Y, we 
want to optimally adjust the parameters of the membership functions, feedback weights and link 
weights in the wavelet neural network optimally. These fuzzy logic rules and wavelet nodes are 
learned in the structure learning. Basically, the idea of backpropagation algorithm is used for 
this parameter learning to find the output errors of the node in each layer. Then, these errors 
are analyzed to perform parameters adjustment. The goal is to minimize the error function 

E(t + 1) = ~1 (Y(t + 1) - yd(t + 1)) 2 , (16) 

where Y(t + 1) is the model output and yd(t + 1) is the desired output at time t + 1. 
When the backpropagation learning algorithm is used, the weighting vector of the RWNFN is 

adjusted such that the error defined in equation (16) is less than the desired threshold value after 
a given number of training cycles. The well-known backpropagation learning algorithm may be 
written briefly as 

( O E ( t + l ) )  (17) W(t + 1) = W(t) + AW(t) = W(t) + 77 OW ' 

where ~ and W represent the learning rate and tuning parameters of the WRFNN respectively. 
Let e(t + 1) = (yd(t + 1) -- Y (t + 1)) and W = [m, a, 0, w] T denote the training error and weighting 
vector of the RWFNN, respectively. Then the gradient of error E(.) in equation (16) with respect 
to an arbitrary weighting vector W is 

OE(t + 1) _ e(t + 1). OV(t + 1) (18) 
OW OW 

With the above equation defined, we can derive the updated rules for the free parameters in the 
RWNFN as follows. 

The link weight of wavelet neural network is updated by 

w~(t + 1) = w~(t) + Awe(t), (19) 

where 
OE(t  + 1) OJ 3) (t)¢~.b(X) 

Aw~( t )  = --rh. -- rlw" e(t + 1). r ,o 3 (t). (20) 
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Similarly, the update laws of mij, crij, and t~ 3. are 

m,j(t  + 1) = .~,j(t) + nm~j(t),  

a~j(t + 1) = ~ j ( t )  + Azq ( t ) ,  

OAt + 1) = OAt) + AOj(t), 

where 

OE(t + 1) 
Am~j(t) -~ --~m 

Om~j 

.oJ~)( t )  

[ 
= ym" e(t + 1). 2. [ 

1. 

OE(t+ 1) [ (O}1) --.m~J) 
Aaij(t)  = -~a Oa,j = ~?~ . e(t + 1). 2. L a~j ~(t)] 

(21) 
(22) 

(24) 

OE(t+l)ot?~j \ + exp (_O~3)( t -  (YJ :~'~J O~3)- ~':~J YJ)(t)1) • 0j(t)) )2 , A 0 , j ( t ) = - ~ o  =~o .e(t  + 1) .0~3)( t ) . (1  

• exp ( - O ~ 3 ' ( t -  1). 0j( t)) .  O~3)(t-  1). 

(26) 

4. I L L U S T R A T I V E  E X A M P L E S  

In this section, three examples axe given to demonstrate the validity of the proposed RWNFN 
to cope with temporal problems. In the following simulations, the parameters and number of 
training epochs were determined based on the desired result. 

EXAMPLE 1. In this example, a nonlinear plant with multiple time delay was guided by the 
following difference equation: 

yv(t + 1) = f (yp(t), Yv(t - 1), yp(t - 2), up(t), up(t - 1)), (27) 
where 

XlX2X3X5  (X3 -- 1) + X4 
f (Xl'  X2' X3' X4' X5) = 1 "~- X22 "~- ~]  (28) 

Here, the current output of the plant depends on three previous outputs and two previous inputs. 
In [7], the feedforward neural network, with five input nodes for feeding the appropriate past 
values of yp and u were used. In the I~WNFN, only the current state yp(t) and the control 
input u(t) were fed to our model, and the output yp(t + 1) was determined. In this simulation, 
we used only ten epochs. There were 900 time steps in each epoch. The training inputs were 
independently and identically distributed (i.i.d.) with a uniform sequence over [-2, 2] for about 
half of the training time. A single sinusoid signal was given by 1.05 sin(~rt/45) for the remaining 
training time. There was no repetition of these 900 training data; that is, we had different 
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Figure 4. Simulation results of the RWNFN for dynamic system identification in 
Example 1. 

training sets for each epoch. The test input signal u(t) in the following equation was used to 
determine the identification results 

sin 7rt 

u(t) = 1.0, 
-1 .0 ,  

0.3sin ~-~ +0 . 1 s in  ~ + 0 . 6 s i n  

0 < t < 250, 

250 __ t < 500, 

500 _< t < 750, 

750 < t < 1000. 

(29) 

The initial parameters ~?m ---- ~ = 7o ---- ~/w = 0.05, Chnit = 0.8, and D -- 0.08 were chosen. After 
training, three fuzzy rules grew for the incoming training data. Figure 4a shows the distribution 
of the input training patterns and the final assignment of the rules, (i.e., distribution of the 
input membership functions). In this figure, the boundary of each ellipse represents a rule with 
firing strength 0.5. The maximum firing strength 1 occurred in the center of the ellipse. The 
membership functions on the u(t) and y(t) dimensions are also shown in Figure 4a. The obtained 
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dynamic fuzzy rules after online learning were 

R l : i f u ( t )  is #(-0.28,0.69) and yp(t) is , ( -0 .18 ,0 .97)  and hi(t) is G, 

then ~l(t + 1) is 0.48¢0.0 - 0.08¢1.0 - 0.014¢1.1 and hl(t + 1) is 0.01; 

R2 : if u(t) is , ( - 0 . 55 ,  1) and yp(t) is , ( -0 .78,0 .98)  and h2(t) is G, 

then ~)2(t q- 1) is - 0.6¢o.o - 0.69¢1.0 - 0.55~b1.1 and h2(t + 1) is - 0.39; 

R3:  if u(t) is ,(0.57, 0.8) and yv(t) is ,(1.05, 0.79) and h3(t) is G, 

then ~3(t + 1) is 0.18¢0.0 + 0.76¢1.0 + 0.38¢1.1 and h3(t -b 1) is - 0.46. 

In the above rules, hi,  h2, and h3 are the generated internal variables; 91, 92, and Y3 are the 
outputs of the wavelet neural networks; #(mi~, aij) represents a Gaussian membership function 
with center mi3 and width aij; and G is the sigmoid function stated previously in equation (6). 
Figure 4b shows the outputs of the plant and the RWNFN model for the testing data. The results 
show the perfect identification capability of the RWNFN model. Figure 4c illustrates the error 
between the desired output  and the RWNFN output. The learning curves of the RWNFN model 
and the RFNN [10] model are shown in Figure 4d. As shown in this figure, we obtained a smaller 
rms error and a quicker convergence. 

We now compare the performance of our model with that  of other existing recurrent neuro fuzzy 
methods (RSONFIN [8], TRFN-S [9], and RFNN [10]). The comparison results are tabulated 
in Table 1. As shown in Table 1, the proposed RWNFN model produces smaller rms error than 
other recurrent neuro fuzzy methods by using adjustable parameters. Clearly, the RWNFN is 
more effective than other existing recurrent neuro fuzzy networks. 

Table 1. Performance corn ,arison of various recurrent methods in Exam Jle 1. 

Parameters RMS Error (Train) RMS Error (Test) Epochs 

RWNFN 24 0.001 0.0014 10 
RSONFIN [8] 36 0.0248 0.078 10 
TRFN-S [9] 33 0.0084 0.0346 10 

RFNN [10] 24 0.00346 0.0033 10 

EXAMPLE 2. Consider next the following dynamic plant with time delay inputs 

yp(t + 1) = 0.72yp(t) + O.025yp(t - 1)u(t - 1) + 0.01u2(t - 2) + 0.2u(t - 3). (30) 

This plant was the same as that  used in [9]. The current output  of the plant depends on two 
previous outputs and three previous inputs, as in Example 1 of the identification model, where 
only two external input values were fed to the input of the RWNFN. The training data and time 
steps were the same as those used in Example 1. In the training process, we also used 10 epochs. 
Each epoch consisted of 900 time steps. The initial parameters ~/m = ~ = r/0 -- Uw = 0.05, 
crinit = 0.95, and D -- 0.08 were chosen. After training, two recurrent fuzzy logic rules were 
generated, and the corresponding obtained dynamic fuzzy rules after online learning were 

R1 : i f  u(t) is #(0.62,0.92) and yp(t) is #(0.04, 1.3) and hi(t) is G, 

then 91(t + 1) is 1.11¢0.0 + 0.31¢1.0 and hl(t + 1) is - 0.12; 

R2 : if u(t) is/z(-0.13,0.81) and yp(t) is #(-0.19,  1.2) and h2(t) is G, 

then ~)2(t + 1) is - 0.92¢o.o - 0.1¢1.0 and h2(t + 1) is - 0.79. 

The test signal used to test the identification result was the same as used in Example 1. 
Figure 5a shows the distribution of the training patterns and the final task of the rules in the 
[u(t), y(t)] plane. The membership functions on the u(t) and y(t) dimension are also shown in 
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(c). The error between the RWNFN output and 
the desired output. 

(d). Learning curves of the RWNFN and the 
RFNN [10]. 

Figure 5. Simulation results of the RWNFN for dynamic system identification in 
Example 2. 

Table 2. Performance corn )arison of various recurrent methods in Exam de 2. 

Parameters RMS Error (Train) RMS Error (Test) Epochs 

RWNFN 18 0.00048 0.00093 10 

RSONFIN [8] 49 0.03 0.06 10 

TRFN-S [9] 33 0.0067 0.0313 10 

RFNN [10] 24 0.0014 0.0026 10 

Figure ha. Figure 5b shows the outputs  of the plant and the RWNFN model. The results Mso 
showed the perfect identification capabili ty of the RWNFN model. Figure 5c illustrates the error 

between the desired output  and the RWNFN output .  The learning curves of the RWNFN model 
and the R F N N  [10] model are shown in Figure 5d. In this figure, we obtained a smaller rms error 
and convergence more quickly than  RFNN [10]. 

Finally, we compared the performance of our model with tha t  of other existing recurrent 

neuro fuzzy methods  (RSONFIN [8], TRFN-S [9], and RFNN [10]). The  comparison results are 
tabula ted  in Table 2. As shown in Table 2, the numbers of adjustable parameters  and rms error 
in our model are smaller than  other recurrent methods with the same training epochs. 
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EXAMP LE 3. The discrete time Henon system is repeatedly used in the study of chaotic dy- 
namics and is not too simple in the sense that it is of the second order with one delay and two 
parameters [10]. This chaotic system is described by 

y(t ÷ 1) - - P .  y2(t) + Q . y ( t -  1) + 1.0, for t - -  1 , 2 , . . . ,  (31) 

which, with P = 1.4 and Q -- 0.3, produces a strange chaotic attractor, as shown in Figure 6a. 
For this training, the input of the RWNFN was y(t - 1) and the output was y(t). We used 
the training input patterns sampled randomly (1000 pairs) from the system over the interval 
y(t) E [-1.5,  1.5]. Then the RWNFN was used to approximate the chaotic system. 

In applying the RFWNN to this example, we used only 100 epochs. Here, the initial point was 
[y(1), y(0)] T = [0.4, 0.4] T. The learning rate ~m = ~]~ = ~]0 = ~w = 0.05, ainit = 0.3, and the 
prespecified threshold/9 = 5 × 10 -5 were used. After training, three recurrent fuzzy logic rules 
were generated. The obtained fuzzy rules were 

RI:  if y(t - 1) is #(2 .98 , -2 .83)  and hz(t) is G, 

then 91(t) is - 2.97¢0.0 - 0.63¢1.o - 1 . 71¢1 .1  and hl(t "t- 1) is - 2.52; 

R2 : if y(t - 1) is # ( -0 .11 ,  1.4) and h2(t) is G, 

then 92(t) is 2.71¢o.o + 1.41¢1.o + 1.41¢z.z and h2(t + 1) is 0.07; 
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(a). Check data of this chaotic system. (b). Resul t  of identification using the FNN [6] for 
the chaotic system. 
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(c). Resu l t  of identification using the RWNFN for the chaotic system. 

Figure 6. Simulation results for identification of a chaotic system. 
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Table 3. Performance comparison of various recurrent methods in Example 3. 

Rule Numbers Parameters RMS Error (Rain) RMS Error (Test) 

3 16 0.0020 0.0023 

8 32 0.0141 0.0145 

8 24 0.1338 0.1557 

Epochs 

100 

100 

239 

R3 : if  y ( t -  1) is # ( - 3 . 3 1 ,  2.78) and  h3(t)  is G, 

t hen  93(t) is - 3.44¢0.0 - 1.37¢1.0 - 0.54¢1.1 and  h~(t + 1) is 3.11. 

The phase plane of this chaotic system after training for the FNN [6] and the RWNFN are 
shown in Figure 6b and Figure 6c. From the simulation results shown in Figure 6b, we can see 
that the FNN is inappropriate for chaotic dynamics system because of its static mapping. From 
Table 3, a comparison shows that the rms error (training and testing) of the proposed model is 
smaller than the RFNN model and the FNN [6] model with fewer fuzzy rules and training epohs. 

5. C O N C L U S I O N  

The proposed RWNFN, which is a modified version of the WNFN [2], was used to identify 
nonlinear dynamic systems. Adding feedback connections in the third layer of the WFNN, where 
t he  feedback  uni t s  ac t  as m e m o r y  e lements ,  develops  t he  t e m p o r a l  re la t ions  e m b e d d e d  in the  

R W N F N .  Using  d y n a m i c  compos i t i on  for p a t t e r n s  c lus ter ing  and  free p a r a m e t e r s  a d j u s t e d  by  

l ea rn ing  process  from numer ic  i n p u t - o u t p u t  da t a .  F ina l ly ,  the  R W N F N  m o d e l  was t e s t ed  on 

th ree  t e m p o r a l  examples .  S imula t ions  d e m o n s t r a t e d  t h a t  t he  R W N F N  m o d e l  was qui te  effective 

in many temporM problems. 
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